Available online at www.sciencedirect.com
INTERNATIONAL JOURNAL OF

sc.ENCE@D.nEm SOLIDS and
STRUCTURES

www.elsevier.com/locate/ijsolstr

EILSEVIER International Journal of Solids and Structures 42 (2005) 591-604

Nonlinear viscoelastic micromechanical analysis
of fibre-reinforced polymer laminates with damage evolution

Yunfa Zhang, Zihui Xia *, Fernand Ellyin

Department of Mechanical Engineering, University of Alberta, Edmonton, Alta., Canada T6G 2G8

Received 14 April 2004
Available online 3 August 2004

Abstract

A micromechanical model of unidirectional fibre-reinforced polymer laminates under off-axis loading is analyzed
using finite element method. A three-dimensional periodic unit cell is established with the matrix described by a non-
linear viscoelastic model and the fibre by an elastic one. Matrix cracking is modeled by smeared crack method which
permits a crack description in terms of stress—strain relations and stiffness reduction in particular orientations. The
micromechanical analysis features material nonlinearity, damage initiation and growth, and multiaxial loading. Numer-
ical results reveal the local and global response of the laminate including the damage mechanism. The predictions are in
good agreement with the test results performed on a similar composite system.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The utilization of fibre-reinforced polymeric composites (FRPC) in various fields of application has pro-
gressed significantly over past decades. By using composite materials, designers are able to locate and orient
the reinforcement to withstand the anticipated loads. However, in spite of the superior properties of com-
posite materials, the use of composite materials in critical load bearing members is still limited. One of the
main reasons for this limited application is the difficulty in reliable prediction of the behavior of composite
materials. For example, the time- and temperature-dependent behavior of polymer matrices and the
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mechanical degradation (damage) make the accurate prediction difficult, e.g. see Raghavan et al. (2001) and
Kim et al. (2002), among others.

Most polymers are viscoelastic materials (some thermoplastic polymers may also be viscoelastic—
viscoplastic). Although the fibres, such as E-glass fibre, behave elastically for most of their stress—strain
range, composite laminates still exhibit viscoelasticity. For example, the analysis of Hashin (1966) showed
that the viscoelastic effect in a unidirectional fibre composite is significant for axial shear, transverse shear
and transverse uniaxial stress, for which the influence of matrix is dominant. The viscoelastic response of
FRPC becomes even more pronounced under conditions of high temperature, sustained loading, and/or
high stress level.

The presence of the epoxy matrix often has adverse effects on failure/damage properties, such as fracture
toughness, creep rupture and fatigue life because of its brittleness. For example, matrix cracking could
occur during manufacturing process or at relatively low applied loads. Damage (matrix cracking, interfacial
debonding, etc.) can develop with increasing load, under cyclic loading, or even with increasing time under
static loads. Therefore, it is important to model accurately the response of laminates with damage
evolution.

Furthermore, an accurate composite analysis, especially with damage evolution, should consider the
inherent length scales present in the composite. At least three scales are explicitly manifested in the com-
posite laminates, viz. (a) the structural scale of the entire laminate, (b) the macroscopic scale of individual
plies and (c) microstructural length scales of individual fibres, matrix, coatings or interfaces. In a typical
FRPC, the diameter of each fibre is of the order of a few microns, and the thickness of the layers is of
the order of 100 pm. Therefore, for damage initiation and evolution, a micromechanical analysis is
required.

Micromechanical approach provides overall behavior of the composite through an analysis of a repre-
sentative volume element (RVE) or a unit cell model (Aboudi, 1991; Nemat-Nasser and Hori, 1993). For
composites with fibre arrays, a periodic structure is available and is generally referred to as a repeating unit
cell (RUC). The advantage of this approach is not only in obtaining global properties of the composites but
also various mechanisms such as damage initiation and propagation can be related to the constituents of
composites (Xia et al., 2000; Ellyin et al., 2002).

Finite element method (FEM) has been extensively used to analyze a unit cell, to determine the
mechanical response of composites (Adams and Crane, 1984; Bonora et al., 1994; Hollister and Kikuchi,
1992; Kim et al., 2002). In most cases, applications are limited to unidirectional laminate under uniaxial
loading. A few investigators have also applied micromechanical analysis to the cross-ply laminates (lam-
inates composed of 0° and 90° laminae) for which thermal residual stresses, viscoplastic or viscoelastic
behaviors have been studied (Bigelow, 1993; Chen et al., 2001). Works on the analysis of unidirectional
laminate under off-axis loading can be found, for example, in Aboudi (1991) and Zhu and Sun (2003). In
addition, there have been a number of investigations in which damage modeling (matrix cracking and
interface debonding) was incorporated into micromechanical analysis. In this type of approach the entire
response of laminates under mechanical loading and the corresponding failure mechanisms can be simu-
lated. However, as reviewed by Pagano and Yuan (2000), most of the micromechanical analysis of com-
posites with damage modeling, has been confined to unidirectional laminate under uniaxial loading. A few
investigations for cross-ply laminates have been reported e.g. see Xia et al. (2000), Ellyin et al. (2002)
among others.

Two key requirements for an effective micromechanical analysis are: (a) an accurate constitutive model
for the matrix material, and (b) a proper simulation of damage process (failure criterion and post-failure
constitutive relation). In this paper, a micromechanical FEM model of a unidirectional FRPC laminate
is presented which incorporates the combined effects of material nonlinearity, initiation of matrix cracking
and damage evolution, as well as multiaxial loading. A three-dimensional unit cell is established with the
matrix described by a nonlinear viscoelastic model and the fibre by an elastic one. The multiaxial loading
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condition is specially treated using an iterative procedure since the analysis of a periodic unit cell requires
application of proper periodic boundary conditions. A recently developed nonlinear viscoelastic constitu-
tive model for the matrix is used to describe its time-dependent response under multiaxial loading. Matrix
cracking is modeled by a smeared crack method which assumes the cracked solid to be continuum and
permits a description in terms of stress—strain relations. The predicted results of a 45° off-axis loading
are presented which include the local and global response of the laminate as well as damage evolution.
These results are compared with the experimental data of a similar composite system, and the agreement
is found to be good.

2. Micromechanical modeling of off-axis loading

The off-axis tensile loading applied to a unidirectional lamina can be decomposed into a set of multiaxial
loading in the lamina coordinate system (corresponding to the principal material directions of a lamina), as
shown in Fig. 1.

For 45° off-axis angle, we have,

Exxza'W:ny:%& (1)

The response of a unidirectional laminate under the equivalent multiaxial loads will be analyzed here by
a micromechanical method based on a unit cell. In a composite lamina the actual fibre distribution may not
be entirely periodic across the cross-section. For the sake of simplicity, most micromechanical analyses of
unidirectional laminates assume a periodic array of fibres for which a repeating unit cell can be isolated.
The periodic fibre sequences commonly used are the square array and the hexagonal array (Sun and
Vaidya, 1996; Kujawski et al., 1995). In this study, the square array of fibre distribution is assumed, result-
ing in a repeating unit cube containing one fibre. As shown in Fig. 2, the unit cell has the same fibre volume
fraction as the unidirectional laminate and is meshed by eight node brick elements with 1536 elements and
1881 nodes.

A unified form of periodic boundary conditions for a unit cell or multiple cell models subjected to gen-
eral multiaxial loads can be found in Xia et al. (2003a), which can easily be implemented in a FEM pro-
cedure. For the current problem, the boundary conditions are expressed as follows. Note that they
constrain displacements on each pair of surfaces of the unit cell perpendicular to each coordinate axis, i.e.

liing >
W 5 o

Fig. 1. A unidirectional laminate under off-axis tensile loading.
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Fig. 2. A unit cell of unidirectional laminate.

On the planes perpendicular to X axis,
u(l,y,z) —u(0,y,z) = ¢y, o(l,y,z) —v(0,y,2) =c1p, w(l,y,z) —w(0,y,2) =0 (2)
On the planes perpendicular to Y axis,
u(x,1,z) —u(x,0,z) = cpp, v(x,1,2) —v(x,0,2z) = cp, wix,1,z) —w(x,0,z) =0 (3)
On the planes perpendicular to Z axis,
u(x,y,1) —u(x,»,0) =0, v(x,y1)—0v(xy0) =0 4)
w(x,»,0) =0, w(x,y,1)=9 (5)

And at the centre of the unit cell, u = v = 0, to eliminate the rigid body motion. Note also that Eq. (5) indi-
cates that in the Z direction, a generalized plane strain condition is adopted, which implies that the laminate
is thick in the Z direction.

The global strain components can be taken as the average value over the unit cell, i.e.

_ 1
@ =5 [ telvrzar )
Vv
Under the above boundary conditions, for a unit length cell, the nonzero global strain components are
E)oc = C11, E}y = C2, Exy = C12,4 and Ezz =0 (7)

Therefore, the global strain in the 45° direction is,

1

€ 25(6’11 +cn) +en (8)
For each time step, At, the strain increment is given by

AE = iAt ©)

where ¢ is the applied global strain rate. It is to be noted that in Eq. (1) the multiaxial loads are the global
stress components applied to the unit cell model. An iterative procedure is required to ensure proper values
of ¢11, €20, 12, so that Eq. (1) is satisfied at each step. The iteration procedure is as follows:
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(1) For each time step Az, we have the trial values of ¢y, ¢, ¢12, Which satisfy Eq. (8).
(i1) The solution with ¢y, 25, 12 gives the stress distribution in the unit cell, so the global stress compo-
nents can be calculated from

(@) = [ (oterznar (10)

where V' is the volume of the unit cell.

(ii1) Eq. (1) is checked and, if it is satisfied (within certain error limit), then next time step is proceeded. If
not, new values of ¢11, ¢», ¢1» are obtained and the steps (i)—(iii) are repeated. For a small time step, it
could be assumed that the increments of ¢y, ¢25, ¢1» are proportional to the corresponding increment
of average stress components, then the new values of ¢y, ¢, ¢j» can be estimated from the average
stresses, Eq. (10). Numerical calculation proved that by using this method the required values of
11, €22, €12 could be obtained through a few iterations.

3. Material model

The fibres behave elastically for most of their stress—strain range, so that they are modeled by the gen-
eralized Hooke’s law. However, the epoxy matrix, like other thermoset polymers, has a highly nonlinear
viscoelastic response. Therefore, an effective micro-mechanical analysis of fibre composites requires accu-
rate constitutive relations for the matrix material. In this study, the epoxy polymer matrix is modeled by
a nonlinear viscoelastic model (Xia et al., 2003b) and is summarized by the following expressions:

{él} = {Ee} + {30} (11)
{6} = E[4]"'{&} (12)

In the above, {&}, {&}, {é&}, {6} are the total strain-rate, elastic strain-rate, creep strain-rate, and stress-

rate vectors (each contains six components, respectively). E is an elastic modulus which is assumed to be
constant and [A4] is a matrix related to the value of Poisson’s ratio, defined by

1t —-» - 0 0 0 7
e ) 0 0 0
v —v 1 0 0 0
A= 0 1+v 0 0 (13)
0 0 I+v O
L 0 0 0 1+v]

For a number of Kelvin (Voigt) elements connected in series, creep strain rate {&.} is the sum of the strain-
rate of each element {¢&}, i.e.

@ =3 (E - L) (14)

= \Eiti

In the above 1; =n,/E; (i=1,2,...,n) denotes the retardation time, E; is the spring stiffness and #; is the
dashpot viscosity for the ith Kelvin (Voigt) element, respectively. Thus, the combination of Egs. (11)—
(14) provides a uniaxial representation consisting of one linear spring and several nonlinear Kelvin elements
connected in series (Fig. 3). Based on experimental observations, the retardation time t; in Eq. (14) has a
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Fig. 3. A uniaxial visoelastic model represented by a finite series of Kelvin elements coupled with an elastic spring.

damped exponential character as in an exponential-type function. Its value determines the time duration
after which contribution from the individual Kelvin element becomes negligible. Therefore, the number
of the Kelvin elements adopted in the constitutive equation depends on the required time range. For sim-
plicity, we introduce a time scale factor o, and assume that

7= ()1 (15)

In this way all 7; are related through the scale factor a. A time span of order of » would be covered, if n
Kelvin elements were chosen and the value of o was taken to be 10.

The description of the nonlinear behavior in the current model was achieved by letting E;’s be functions
of the current equivalent stress, 6.q. Furthermore, a single function form for all E/s is assumed, i.e.

E; =Ei(0¢) (16)
with

(R— DI, + \/(R — 1’12 + 12RJ,
o7 (17)

where I} = 0y + 0, + o3 is the first invariant of the stress tensor, and J> = S;S;/2 is the second invariant of
the deviatoric stress and R is the ratio of tensile to compressive ‘yield stress’. Note that when R =1, then
Eq. (17) reduces to the von Mises equivalent stress, g.q = v/3J,. The multiaxial constitutive model of the
thermosetting polymers includes a criterion which delineates loading and unloading behaviors. This will
not be presented here and interested readers are encouraged to consult Xia et al. (2003b) and Hu (2002).

The values of constants (£, v, «, 71, R) and the functional form of E(g¢q) can be determined from uni-
axial creep curves at different stress levels following a routine procedure which is described in the above
mentioned references. The constants and functional form for an epoxy resin, Epon 826 with curing agent
9551, are listed in Table 1 (Xia et al., 2003b).

The composite system studied here is E-glass/epoxy matrix with fibre volume fraction of 52.5%. The fibre
is modeled as an elastic material with Young’s modulus E = 72,500 MPa and Poisson’s ratio v = 0.22.

O'eq -
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Table 1

Constants and function E}(geq)

E (MPa) v o T R
3400 0.42 10 6.116 1.15

a—22.764
Ei(0) = 1.055 x 10°¢™ 1300 MPa.

4. Modeling of matrix cracking

Upon increasing the applied load, microcracks will develop in the matrix. These cracks cause reduction
in stiffness of the laminate. However, the laminate may continue to carry further load in spite of these
cracks. In contrast to a single dominant crack in isotropic materials, the multiplicity of cracks in a laminate
makes it difficult to deal with such cracks through the classical fracture mechanics approach. Instead, the
so-called ““smeared crack’ approach (e.g., Rots, 1991) will be used. Here we briefly present the approach
including numerical considerations.

4.1. Initiation of a crack

The first step is to determine the initiation of a crack using an appropriate damage criterion. Experimen-
tal investigation has indicated that the maximum principal strain theory is in good agreement with test data
for matrix crack initiation in FRPCs (Hoover et al., 1997; Xia et al., 2000). Thus, at each step and at each
matrix sampling point, the principal strains are computed, and a local (crack) coordinate system O-1-2-3 is
established in which the three axes are along the directions of the three principal strains (¢; > & > &3, see
Fig. 4).

The maximum principal strain damage criterion is then specified by

& = & (18)

and when this condition is met, then a crack in the plane perpendicular to the direction of the ¢ is deemed
to have initiated.

4.2. Post-damage constitutive model

Once a crack is formed, it is assumed that it cannot transfer normal and shear stresses across the crack,
i.e., 011, 012 and a;3 — 0. The subscript 1 denotes the Cartesian axis perpendicular to the plane of the crack

37

L/

Fig. 4. Crack coordinate system.
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while 2 and 3 are in the crack plane (see Fig. 4). However, the ability to transfer the other stress components
is not affected by the crack formation. Let the stress and strain vectors in the local (crack) coordinate sys-
tem be designated by,

{G}Cr = [01702,037012,0237‘731]T

o (19)
{e} :[31»82,837V127V237V31]T
and stress and strain vectors in the global (O-x-y-z) coordinate system are,
{a}gl = I:axxy ny7 Oz, O-xya O-)zu sz]T (20)
{S}gl = [6xx7 8}{)/7 8227 yxy? yyz? yzx] !
Thus, the post-damage constitutive model in the crack coordinate system is
{Ac}™ = E([D[{Ae}"” — y[B]{a}" (1)
or written in its full form
Aoy \ & pz, 0 0 O O O Agr \ & 1 00 00O o\
AGZ 0 Z] Zz 0 0 0 ASZ 00 0 0 0 O ()
Aacs = 0 2, zz 0 0 O Ag; 000 0O0O 03
Aoy "Moo 0 0 pzy 0 0 Ay, Tooo1o0o0 012
A623 0 0 0 0 Z3 0 AVZ% 00 0 0 0 O 0973
AO’31 0 0 0 0 0 ﬁZ3 A'V31 00 0 0 01 031
(22)
In the above,
1 - 1
Zi=— v =Yz (23)

(1+0v)(1-2v)’ (14+0v)(1-2v)’ 2(1 +v)’

E, is the modulus of the epoxy under uniaxial tensile loading at the instant of damage, f is a small number
which represents the loss of the stiffness in these three particular stress directions and the constant y allows
the three stress components to be reduced to near zero values in a sufficiently short time duration.

In Hu (2002), a series of uniaxial tensile tests on pure epoxy specimens at a strain rate of 10~*s~! gave
the failure strain of 4.8%, therefore, the value of ¢,, = 4.8% is used in this analysis. Also £, = 284 MPa is
taken as the tangent modulus just before failure of the epoxy under the uniaxial tensile loading (Fig. 5).

The values of f# and y are taken to be 0.001 and 0.2, respectively in the current calculation. With such a
choice of the values of the constants in Eq. (21), the above constitutive relation would reduce the stress
components across the crack plane to a very small value in a short time (zero is the asymptotic limit).
The matrix element then cannot carry loads in the corresponding direction; thus, simulating the damage
process. Fig. 5 shows the response of a matrix element before and after damage. Also shown is the test re-
sult of epoxy specimens under uniaxial tensile loading at a strain rate of 10~* s~'. It can be seen that the
response before failure is in good agreement with the test data. These values will be used in the following
analysis for composite laminates.

It is to be noted that the formation of cracks would results in further anisotropy of an orthotropic com-
posite laminate. However, this would not affect the application of periodic boundary conditions discussed
earlier. In the current analysis, the laminate is seen as a periodical array of unit cells, each cell has the iden-
tical stress/strain field and the same cracking pattern.



Y. Zhang et al. | International Journal of Solids and Structures 42 (2005) 591-604 599

80 ——Prediction
strain rate=10""
70
$=0.001
60 - =02
= 50 P 5, =48 %
o —=— Test (Hu, 2002
S 40- P ( )
B 30 4
n 204 i s
&
104 & l
0 -"f Lﬂmmm
-10 T T T T T T T T T T T T T 1
0 1 2 3 4 5 6 7

Strain (%)

Fig. 5. The response of viscoelastic element before and after damage.

4.3. The stress and strain transformation from local to global coordinate system

The crack orientation in a 3D composite unit cell may vary at different locations; therefore, it would be
convenient to have the post-damage relation transferred to the global coordinate system, where the FEA is
carried out. Let the direction cosines of the principal strains ¢; (i = 1,2, 3) be denoted by (¢; m; n;). Therefore,
the transformation matrix between the local and global coordinate systems can be written as,

i f% m% I’l% €1m1 min; I’l1€1
Eg mg I’l% €2m2 myony 11262
2
/@3 I’I’l% I’l% €3I’I’I3 msns 1’1353
7] = (24)

2000, 2mimy, 2nmny Limy 4+ bomy  miny +mon;  niby + nyty

2€2€3 2m2m3 2"21’13 €2m3 + £3M2 mons + msny nzfg + 1’1362

L2030, 2mszmy  2n3ny Csmy +6ymy mang +mny nzbl) +nls ]
The stress and strain transformation is given by
{Ae} = [THAe}", {Ac}" = [T {Ad}*, {0} =[T] " {o}" (25)
Substituting Eq. (25) into Eq. (21), the post-damage constitutive equation in the global coordinate system is
{Ac}¥ = E[D'[{Ae}* — 4[B{a}" (26)

with

(27)
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5. Results of 45° off-axis loading

The finite element code ADINA was used to conduct the numerical analysis. The viscoelastic constitu-
tive relation of the resin matrix and the crack simulation procedure were implemented into the code
through its user-defined subroutine. The displacement boundary conditions defined by Egs. (2)-(5) are
specified using constrain equations. The calculations were conducted on a SGI Origin 2000 computer
system. A finer mesh of the unit cell was also used to verify the solution convergence of the analysis.
The finer mesh has approximately doubled the number of elements and nodes as compared to the meshes
shown in Fig. 2. It was found that there was no appreciable difference between the results of the finer mesh
model and that shown in Fig. 2 with respect to global stress/strain relationship prior to damage, initiation
of damage and propagation of the damaged zone.

5.1. Global response

Fig. 6 shows the predicted global stress/strain response of a 45° off-axis laminate and the comparison
with the test results of Ellyin and Kujawski (1995) under a deformation controlled loading applied with
a strain rate of 107* s~!. The test specimens were made of “Scotchply 1003 prepregs of 3M Company.
The fibre volume fraction was 52.5%. However, the properties of the epoxy matrix used in the “Scotchply
1003” prepreg were not available from the manufacturer, therefore, in the current calculation, the material
constants for the Epon 826/curing agent 9551 have been used. It can be seen that the predicted trend is in
good agreement with the test results. The predicted initial stiffness is 11.24 GPa, and the maximum load is
71.3 MPa, while the corresponding test results are 10.07 GPa and 83 MPa. One reason for the difference
between the test data and the prediction is that the epoxy matrix in the prepreg was not the same as the
Epon 826/Curing agent 9551 epoxy resin. As noted in Table 1, for the matrix, £ = 3400 MPa, v = (.42
and for the fibre, £ = 72500 MPa, v =0.22 were used in the current calculation. For the initial slope of
the stress—strain curve of the composite (elastic modulus), both the elastic or the nonlinear viscoelastic anal-
yses will predict very similar results. Using the aforementioned values in an elastic analysis one would ob-
tain an elastic modulus of E4s = 11.3 GPa. However, if the elastic modulus of the epoxy matrix was taken

90 -
80 - /‘ —— Prediction
70 // Strain rate=10"/s
}/’;’s $=0.001
< 60- & s L\ 1=0.2
= AR & =4.8%
= oo L cr
@ S / 3 —— Test (Ellyin & Kujawski,1995)
(7] ° %
o 40 $ / £
7] $r

301 /
I
20 /

104 5

0 M 1 M 1 v 1 I M 1 ' 1 M 1

—
0.0 05 1.0 15 20 25 3.0 35 4.0
Strain (%)

Fig. 6. Test data and predicted results of unidirectional laminate under 45° off-axis tensile loading.
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as £ =2950 MPa and the other constants were kept the same, then one obtains, E4s = 10.0 GPa for the
laminate, which is very close to the test value. Therefore, the discrepancy between the experimental and
predicted value is most likely due to the overestimated elastic modulus of the epoxy polymer used in the
prepreg sheets.

The effect of viscoelastic behavior of the matrix is manifested by the nonlinearity of the stress—strain
curve, which is noticeable once the stress exceeds 40 MPa (about 0.5% strain). Since the damage has not
yet occurred at this load level, therefore this nonlinearity is mainly caused by the viscoelasticity of the epoxy
matrix.

5.2. Local response and damage evolution

The advantage of the current micromechanical method over the macromechanical modeling is that it
provides a detailed stress/strain field in each constituent. It is the local stress/strain distribution which
determines the damage initiation. Fig. 7 shows the distribution of the maximum principal strain in the unit
cell at global strain of & = 0.9%. Fig. 7(a) is an isometric 3D view and Fig. 7(b) is a front view at the fibre
direction. As seen in Fig. 7(a), the distribution along the fibre direction (X-axis) is uniform. Also, it is
clearly shown in Fig. 7(b) that the deformation is symmetric about the horizontal mid-plane. An examina-
tion of the distributions of other stress/strain components results in the same conclusion.

It can be seen that the maximum value of principal strain occurs in the matrix near the fibre/matrix inter-
face and along the X-axis. Thus, upon further loading, there will be two symmetric ‘narrow bands’ of matrix
cracking along the fibre direction.

The evolution of the damage zone (matrix cracking) can also be determined by the current analysis. Fig.
8 shows half of the unit cell. At an applied global strain of &€ = 0.94%, the damage initiates in the form of

.no12
= . 0062
] L0112
] . 0162
o 0212 e
E S e
% .0362 y ‘
. 0412 :
I |
Y
Y
%z
Z X
e ®

Fig. 7. First principal strain distribution in the unit cell: (a) isometric 3D view; (b) front 2D view.
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two ‘narrow bands’ in the matrix near the interface along the fibre direction, Fig. 8(a). Upon further loading
the bands expand around the circumference of the fibre. Note that the direction of global load is along the
diagonal of the square cross-section. The predicted direction of the matrix cracking is in agreement with
the test observations. In the tests of unidirectional coupon specimen under off-axis tensile loading, the
cracks in the specimen and the final fracture of the specimen were along the fibre direction, see, ¢.g. El Kadi

(1993).

6. Conclusions

The micromechanical FEM model of unidirectional FRPC laminates presented herein has successfully
incorporated the combined effects of material nonlinearity and multiaxial loading. The damage initiation
and growth, as well as global time-dependent response of a unidirectional fibre-reinforced laminate under
off-axis loading are directly related to the properties of the constituents. The multiaxial loading condition is
specifically treated using an iterative procedure which ensures a repeating unit cell undergoing proper peri-
odic boundary conditions. The matrix cracking is modeled by the smeared crack method which allows for
the loss of load transmission in particular orientations and permits a description of crack in terms of stress—
strain relations. The periodic boundary conditions are implemented into a general purpose FEM code by
specifying a number of constrain equations. The nonlinear viscoelastic behavior and the post-damage
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material model are inserted into a FEM code by a user-defined subroutine. Thus, the current approach can
easily be implemented for engineering applications.

Both global and local response of the unidirectional laminates under 45° off-axis loading are predicted,
which are in good agreement with the experimental observations. Although only the results for 45° off-axis
loading is presented herein, the approach is applicable in the analysis of unidirectional laminate under any
off-axis angle. The approach can also be extended to analysis of angle-ply laminates under multiaxial loads,
e.g. an elastic analysis for the angle-ply laminate can be found in Xia et al. (2003a).
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